Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Counterfactual Learning from Bandit Feedback

Published 10 Sep 2018 in cs.LG, cs.AI, cs.IR, stat.ME, and stat.ML | (1809.03084v3)

Abstract: What is the most statistically efficient way to do off-policy evaluation and optimization with batch data from bandit feedback? For log data generated by contextual bandit algorithms, we consider offline estimators for the expected reward from a counterfactual policy. Our estimators are shown to have lowest variance in a wide class of estimators, achieving variance reduction relative to standard estimators. We then apply our estimators to improve advertisement design by a major advertisement company. Consistent with the theoretical result, our estimators allow us to improve on the existing bandit algorithm with more statistical confidence compared to a state-of-the-art benchmark.

Citations (46)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.