Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploration on Grounded Word Embedding: Matching Words and Images with Image-Enhanced Skip-Gram Model (1809.02765v1)

Published 8 Sep 2018 in cs.CL

Abstract: Word embedding is designed to represent the semantic meaning of a word with low dimensional vectors. The state-of-the-art methods of learning word embeddings (word2vec and GloVe) only use the word co-occurrence information. The learned embeddings are real number vectors, which are obscure to human. In this paper, we propose an Image-Enhanced Skip-Gram Model to learn grounded word embeddings by representing the word vectors in the same hyper-plane with image vectors. Experiments show that the image vectors and word embeddings learned by our model are highly correlated, which indicates that our model is able to provide a vivid image-based explanation to the word embeddings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ruixuan Luo (8 papers)

Summary

We haven't generated a summary for this paper yet.