Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Symmetries of vacuum spacetimes with a compact Cauchy horizon of constant non-zero surface gravity (1809.02580v2)

Published 7 Sep 2018 in math.DG, gr-qc, math-ph, and math.MP

Abstract: We prove that any smooth vacuum spacetime containing a compact Cauchy horizon with surface gravity that can be normalised to a non-zero constant admits a Killing vector field. This proves a conjecture by Moncrief and Isenberg from 1983 under the assumption on the surface gravity and generalises previous results due to Moncrief-Isenberg and Friedrich-R\'acz-Wald, where the generators of the Cauchy horizon were closed or densely filled a 2-torus. Consequently, the maximal globally hyperbolic vacuum development of generic initial data cannot be extended across a compact Cauchy horizon with surface gravity that can be normalised to a non-zero constant. Our result supports, thereby, the validity of the strong cosmic censorship conjecture in the considered special case. The proof consists of two main steps. First, we show that the Killing equation can be solved up to infinite order at the Cauchy horizon. Second, by applying a recent result of the first author on wave equations with initial data on a compact Cauchy horizon, we show that this Killing vector field extends to the globally hyperbolic region.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.