Multitask and Multilingual Modelling for Lexical Analysis
Abstract: In NLP, one traditionally considers a single task (e.g. part-of-speech tagging) for a single language (e.g. English) at a time. However, recent work has shown that it can be beneficial to take advantage of relatedness between tasks, as well as between languages. In this work I examine the concept of relatedness and explore how it can be utilised to build NLP models that require less manually annotated data. A large selection of NLP tasks is investigated for a substantial language sample comprising 60 languages. The results show potential for joint multitask and multilingual modelling, and hints at linguistic insights which can be gained from such models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.