Papers
Topics
Authors
Recent
Search
2000 character limit reached

GANs beyond divergence minimization

Published 6 Sep 2018 in cs.LG, cs.AI, and stat.ML | (1809.02145v1)

Abstract: Generative adversarial networks (GANs) can be interpreted as an adversarial game between two players, a discriminator D and a generator G, in which D learns to classify real from fake data and G learns to generate realistic data by "fooling" D into thinking that fake data is actually real data. Currently, a dominating view is that G actually learns by minimizing a divergence given that the general objective function is a divergence when D is optimal. However, this view has been challenged due to inconsistencies between theory and practice. In this paper, we discuss of the properties associated with most loss functions for G (e.g., saturating/non-saturating f-GAN, LSGAN, WGAN, etc.). We show that these loss functions are not divergences and do not have the same equilibrium as expected of divergences. This suggests that G does not need to minimize the same objective function as D maximize, nor maximize the objective of D after swapping real data with fake data (non-saturating GAN) but can instead use a wide range of possible loss functions to learn to generate realistic data. We define GANs through two separate and independent D maximization and G minimization steps. We generalize the generator step to four new classes of loss functions, most of which are actual divergences (while traditional G loss functions are not). We test a wide variety of loss functions from these four classes on a synthetic dataset and on CIFAR-10. We observe that most loss functions converge well and provide comparable data generation quality to non-saturating GAN, LSGAN, and WGAN-GP generator loss functions, whether we use divergences or non-divergences. These results suggest that GANs do not conform well to the divergence minimization theory and form a much broader range of models than previously assumed.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.