Papers
Topics
Authors
Recent
2000 character limit reached

Model-Based Regularization for Deep Reinforcement Learning with Transcoder Networks

Published 6 Sep 2018 in cs.LG and stat.ML | (1809.01906v2)

Abstract: This paper proposes a new optimization objective for value-based deep reinforcement learning. We extend conventional Deep Q-Networks (DQNs) by adding a model-learning component yielding a transcoder network. The prediction errors for the model are included in the basic DQN loss as additional regularizers. This augmented objective leads to a richer training signal that provides feedback at every time step. Moreover, because learning an environment model shares a common structure with the RL problem, we hypothesize that the resulting objective improves both sample efficiency and performance. We empirically confirm our hypothesis on a range of 20 games from the Atari benchmark attaining superior results over vanilla DQN without model-based regularization.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.