Open-Loop and Closed-Loop Solvabilities for Stochastic Linear Quadratic Optimal Control Problems of Markov Regime-Switching System
Abstract: This paper investigates the stochastic linear quadratic (LQ, for short) optimal control problem of Markov regime switching system. The representation of the cost functional for the stochastic LQ optimal control problem of Markov regime switching system is derived using the technique of It{^o}'s formula. For the stochastic LQ optimal control problem of Markov regime switching system, we establish the equivalence between the open-loop (closed-loop) solvability and the existence of an adapted solution to the corresponding forward-backward stochastic differential equation with constraint (the existence of a regular solution to the Riccati equation). Also, we analyze the interrelationship between the strongly regular solvability of the Riccati equation and the uniform convexity of the cost functional.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.