Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Self-sustained activity of low firing rate in balanced networks (1809.01020v3)

Published 4 Sep 2018 in q-bio.NC and physics.bio-ph

Abstract: Self-sustained activity in the brain is observed in the absence of external stimuli and contributes to signal propagation, neural coding, and dynamic stability. It also plays an important role in cognitive processes. In this work, by means of studying intracellular recordings from CA1 neurons in rats and results from numerical simulations, we demonstrate that self-sustained activity presents high variability of patterns, such as low neural firing rates and activity in the form of small-bursts in distinct neurons. In our numerical simulations, we consider random networks composed of coupled, adaptive exponential integrate-and-fire neurons. The neural dynamics in the random networks simulate regular spiking (excitatory) and fast-spiking (inhibitory) neurons. We show that both the connection probability and network size are fundamental properties that give rise to self-sustained activity in qualitative agreement with our experimental results. Finally, we provide a more detailed description of the self-sustained activity in terms of lifetime distributions, synaptic conductances, and synaptic currents.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.