Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wavelet based edge feature enhancement for convolutional neural networks (1809.00982v2)

Published 29 Aug 2018 in cs.CV

Abstract: Convolutional neural networks are able to perform a hierarchical learning process starting with local features. However, a limited attention is paid to enhancing such elementary level features like edges. We propose and evaluate two wavelet-based edge feature enhancement methods to preprocess the input images to convolutional neural networks. The first method develops feature enhanced representations by decomposing the input images using wavelet transform and limited reconstructing subsequently. The second method develops such feature enhanced inputs to the network using local modulus maxima of wavelet coefficients. For each method, we have developed a new preprocessing layer by implementing each purposed method and have appended to the network architecture. Our empirical evaluations demonstrate that the proposed methods are outperforming the baselines and previously published work with significant accuracy gains.

Citations (16)

Summary

We haven't generated a summary for this paper yet.