Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Recurrent Neural Network for Sentiment Quantification (1809.00836v1)

Published 4 Sep 2018 in cs.LG, cs.CL, and stat.ML

Abstract: Quantification is a supervised learning task that consists in predicting, given a set of classes C and a set D of unlabelled items, the prevalence (or relative frequency) p(c|D) of each class c in C. Quantification can in principle be solved by classifying all the unlabelled items and counting how many of them have been attributed to each class. However, this "classify and count" approach has been shown to yield suboptimal quantification accuracy; this has established quantification as a task of its own, and given rise to a number of methods specifically devised for it. We propose a recurrent neural network architecture for quantification (that we call QuaNet) that observes the classification predictions to learn higher-order "quantification embeddings", which are then refined by incorporating quantification predictions of simple classify-and-count-like methods. We test {QuaNet on sentiment quantification on text, showing that it substantially outperforms several state-of-the-art baselines.

Citations (21)

Summary

We haven't generated a summary for this paper yet.