Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Segmentation with Pseudo-marginal MCMC Sampling and Nonparametric Shape Priors (1809.00488v1)

Published 3 Sep 2018 in cs.CV

Abstract: In this paper, we propose an efficient pseudo-marginal Markov chain Monte Carlo (MCMC) sampling approach to draw samples from posterior shape distributions for image segmentation. The computation time of the proposed approach is independent from the size of the training set used to learn the shape prior distribution nonparametrically. Therefore, it scales well for very large data sets. Our approach is able to characterize the posterior probability density in the space of shapes through its samples, and to return multiple solutions, potentially from different modes of a multimodal probability density, which would be encountered, e.g., in segmenting objects from multiple shape classes. Experimental results demonstrate the potential of the proposed approach.

Citations (2)

Summary

We haven't generated a summary for this paper yet.