Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dressing the boundary: on soliton solutions of the nonlinear Schrödinger equation on the half-line (1809.00432v2)

Published 3 Sep 2018 in nlin.SI, hep-th, math-ph, and math.MP

Abstract: Based on the theory of integrable boundary conditions (BCs) developed by Sklyanin, we provide a direct method for computing soliton solutions of the focusing nonlinear Schr\"odinger (NLS) equation on the half-line. The integrable BCs at the origin are represented by constraints of the Lax pair, and our method lies on dressing the Lax pair by preserving those constraints in the Darboux-dressing process. The method is applied to two classes of solutions: solitons vanishing at infinity and self-modulated solitons on a constant background. Half-line solitons in both cases are explicitly computed. In particular, the boundary-bound solitons, that are static solitons bounded at the origin, are also constructed. We give a natural inverse scattering transform interpretation of the method as evolution of the scattering data determined by the integrable BCs in space.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.