Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Coordinate-Free Construction of Scalable Natural Gradient

Published 30 Aug 2018 in cs.LG, math.DG, math.OC, and stat.ML | (1808.10340v1)

Abstract: Most neural networks are trained using first-order optimization methods, which are sensitive to the parameterization of the model. Natural gradient descent is invariant to smooth reparameterizations because it is defined in a coordinate-free way, but tractable approximations are typically defined in terms of coordinate systems, and hence may lose the invariance properties. We analyze the invariance properties of the Kronecker-Factored Approximate Curvature (K-FAC) algorithm by constructing the algorithm in a coordinate-free way. We explicitly construct a Riemannian metric under which the natural gradient matches the K-FAC update; invariance to affine transformations of the activations follows immediately. We extend our framework to analyze the invariance properties of K-FAC applied to convolutional networks and recurrent neural networks, as well as metrics other than the usual Fisher metric.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.