Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Rational Neural Networks for Approximating Jump Discontinuities of Graph Convolution Operator (1808.10073v1)

Published 30 Aug 2018 in cs.LG, cs.AI, cs.CG, and stat.ML

Abstract: For node level graph encoding, a recent important state-of-art method is the graph convolutional networks (GCN), which nicely integrate local vertex features and graph topology in the spectral domain. However, current studies suffer from several drawbacks: (1) graph CNNs relies on Chebyshev polynomial approximation which results in oscillatory approximation at jump discontinuities; (2) Increasing the order of Chebyshev polynomial can reduce the oscillations issue, but also incurs unaffordable computational cost; (3) Chebyshev polynomials require degree $\Omega$(poly(1/$\epsilon$)) to approximate a jump signal such as $|x|$, while rational function only needs $\mathcal{O}$(poly log(1/$\epsilon$))\cite{liang2016deep,telgarsky2017neural}. However, it's non-trivial to apply rational approximation without increasing computational complexity due to the denominator. In this paper, the superiority of rational approximation is exploited for graph signal recovering. RatioanlNet is proposed to integrate rational function and neural networks. We show that rational function of eigenvalues can be rewritten as a function of graph Laplacian, which can avoid multiplication by the eigenvector matrix. Focusing on the analysis of approximation on graph convolution operation, a graph signal regression task is formulated. Under graph signal regression task, its time complexity can be significantly reduced by graph Fourier transform. To overcome the local minimum problem of neural networks model, a relaxed Remez algorithm is utilized to initialize the weight parameters. Convergence rate of RatioanlNet and polynomial based methods on jump signal is analyzed for a theoretical guarantee. The extensive experimental results demonstrated that our approach could effectively characterize the jump discontinuities, outperforming competing methods by a substantial margin on both synthetic and real-world graphs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube