Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Recognizing quasi-categorical limits and colimits in homotopy coherent nerves (1808.09834v3)

Published 29 Aug 2018 in math.CT and math.AT

Abstract: In this paper we prove that various quasi-categories whose objects are $\infty$-categories in a very general sense are complete: admitting limits indexed by all simplicial sets. This result and others of a similar flavor follow from a general theorem in which we characterize the data that is required to define a limit cone in a quasi-category constructed as a homotopy coherent nerve. Since all quasi-categories arise this way up to equivalence, this analysis covers the general case. Namely, we show that quasi-categorical limit cones may be modeled at the point-set level by pseudo homotopy limit cones, whose shape is governed by the weight for pseudo limits over a homotopy coherent diagram but with the defining universal property up to equivalence, rather than isomorphism, of mapping spaces. Our applications follow from the fact that the $(\infty,1)$-categorical core of an $\infty$-cosmos admits weighted homotopy limits for all flexible weights, which includes in particular the weight for pseudo cones.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.