Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Superconvergence Analysis for the Crouzeix-Raviart and the Morley elements

Published 28 Aug 2018 in math.NA and cs.NA | (1808.09810v2)

Abstract: In this paper, an improved superconvergence analysis is presented for both the Crouzeix-Raviart element and the Morley element. The main idea of the analysis is to employ a discrete Helmholtz decomposition of the difference between the canonical interpolation and the finite element solution for the first order mixed Raviart--Thomas element and the mixed Hellan--Herrmann--Johnson element, respectively. This, in particular, allows for proving a full one order superconvergence result for these two mixed finite elements. Finally, a full one order superconvergence result of both the Crouzeix-Raviart element and the Morley element follows from their special relations with the first order mixed Raviart--Thomas element and the mixed Hellan--Herrmann--Johnson element respectively. Those superconvergence results are also extended to mildly-structured meshes.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.