Papers
Topics
Authors
Recent
Search
2000 character limit reached

N-ary Relation Extraction using Graph State LSTM

Published 28 Aug 2018 in cs.CL | (1808.09101v1)

Abstract: Cross-sentence $n$-ary relation extraction detects relations among $n$ entities across multiple sentences. Typical methods formulate an input as a \textit{document graph}, integrating various intra-sentential and inter-sentential dependencies. The current state-of-the-art method splits the input graph into two DAGs, adopting a DAG-structured LSTM for each. Though being able to model rich linguistic knowledge by leveraging graph edges, important information can be lost in the splitting procedure. We propose a graph-state LSTM model, which uses a parallel state to model each word, recurrently enriching state values via message passing. Compared with DAG LSTMs, our graph LSTM keeps the original graph structure, and speeds up computation by allowing more parallelization. On a standard benchmark, our model shows the best result in the literature.

Citations (159)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.