Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BézierGAN: Automatic Generation of Smooth Curves from Interpretable Low-Dimensional Parameters (1808.08871v2)

Published 27 Aug 2018 in cs.LG, cs.AI, cs.CG, and stat.ML

Abstract: Many real-world objects are designed by smooth curves, especially in the domain of aerospace and ship, where aerodynamic shapes (e.g., airfoils) and hydrodynamic shapes (e.g., hulls) are designed. To facilitate the design process of those objects, we propose a deep learning based generative model that can synthesize smooth curves. The model maps a low-dimensional latent representation to a sequence of discrete points sampled from a rational B\'ezier curve. We demonstrate the performance of our method in completing both synthetic and real-world generative tasks. Results show that our method can generate diverse and realistic curves, while preserving consistent shape variation in the latent space, which is favorable for latent space design optimization or design space exploration.

Citations (34)

Summary

We haven't generated a summary for this paper yet.