Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Emotion: A Computational Model of Emotion Using Deep Neural Networks

Published 25 Aug 2018 in cs.AI and cs.HC | (1808.08447v1)

Abstract: Emotions are very important for human intelligence. For example, emotions are closely related to the appraisal of the internal bodily state and external stimuli. This helps us to respond quickly to the environment. Another important perspective in human intelligence is the role of emotions in decision-making. Moreover, the social aspect of emotions is also very important. Therefore, if the mechanism of emotions were elucidated, we could advance toward the essential understanding of our natural intelligence. In this study, a model of emotions is proposed to elucidate the mechanism of emotions through the computational model. Furthermore, from the viewpoint of partner robots, the model of emotions may help us to build robots that can have empathy for humans. To understand and sympathize with people's feelings, the robots need to have their own emotions. This may allow robots to be accepted in human society. The proposed model is implemented using deep neural networks consisting of three modules, which interact with each other. Simulation results reveal that the proposed model exhibits reasonable behavior as the basic mechanism of emotion.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.