Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Entropy Stable Space-Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws (1808.08218v1)

Published 24 Aug 2018 in math.NA

Abstract: This work examines the development of an entropy conservative (for smooth solutions) or entropy stable (for discontinuous solutions) space-time discontinuous Galerkin (DG) method for systems of non-linear hyperbolic conservation laws. The resulting numerical scheme is fully discrete and provides a bound on the mathematical entropy at any time according to its initial condition and boundary conditions. The crux of the method is that discrete derivative approximations in space and time are summation-by-parts (SBP) operators. This allows the discrete method to mimic results from the continuous entropy analysis and ensures that the complete numerical scheme obeys the second law of thermodynamics. Importantly, the novel method described herein does not assume any exactness of quadrature in the variational forms that naturally arise in the context of DG methods. Typically, the development of entropy stable schemes is done on the semi-discrete level ignoring the temporal dependence. In this work we demonstrate that creating an entropy stable DG method in time is similar to the spatial discrete entropy analysis, but there are important (and subtle) differences. Therefore, we highlight the temporal entropy analysis throughout this work. For the compressible Euler equations, the preservation of kinetic energy is of interest besides entropy stability. The construction of kinetic energy preserving (KEP) schemes is, again, typically done on the semi-discrete level similar to the construction of entropy stable schemes. We present a generalization of the KEP condition from Jameson to the space-time framework and provide the temporal components for both entropy stability and kinetic energy preservation. The properties of the space-time DG method derived herein is validated through numerical tests for the compressible Euler equations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.