Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multiple Sequence Alignment is not a Solved Problem (1808.07717v1)

Published 23 Aug 2018 in q-bio.PE

Abstract: Multiple sequence alignment is a basic procedure in molecular biology, and it is often treated as being essentially a solved computational problem. However, this is not so, and here I review the evidence for this claim, and outline the requirements for a solution. The goal of alignment is often stated to be to juxtapose nucleotides (or their derivatives, such as amino acids) that have been inherited from a common ancestral nucleotide (although other goals are also possible). Unfortunately, this is not an operational definition, because homology (in this sense) refers to unique and unobservable historical events, and so there can be no objective mathematical function to optimize. Consequently, almost all algorithms developed for multiple sequence alignment are based on optimizing some sort of compositional similarity (similarity = homology + analogy). As a result, many, if not most, practitioners either manually modify computer-produced alignments or they perform de novo manual alignment, especially in the field of phylogenetics. So, if homology is the goal, then multiple sequence alignment is not yet a solved computational problem. Several criteria have been developed by biologists to help them identify potential homologies (compositional, ontogenetic, topographical and functional similarity, plus conjunction and congruence), and these criteria can be applied to molecular data, in principle. Current computer programs do implement one (or occasionally two) of these criteria, but no program implements them all. What is needed is a program that evaluates all of the evidence for the sequence homologies, optimizes their combination, and thus produces the best hypotheses of homology. This is basically an inference problem not an optimization problem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.