Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An Explicit Neural Network Construction for Piecewise Constant Function Approximation (1808.07390v1)

Published 22 Aug 2018 in math.NA, cs.LG, cs.NA, and cs.NE

Abstract: We present an explicit construction for feedforward neural network (FNN), which provides a piecewise constant approximation for multivariate functions. The proposed FNN has two hidden layers, where the weights and thresholds are explicitly defined and do not require numerical optimization for training. Unlike most of the existing work on explicit FNN construction, the proposed FNN does not rely on tensor structure in multiple dimensions. Instead, it automatically creates Voronoi tessellation of the domain, based on the given data of the target function, and piecewise constant approximation of the function. This makes the construction more practical for applications. We present both theoretical analysis and numerical examples to demonstrate its properties.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.