Papers
Topics
Authors
Recent
Search
2000 character limit reached

On some aspects of the geometry of non integrable distributions and applications

Published 20 Aug 2018 in math.DG | (1808.06704v1)

Abstract: We consider a regular distribution $\mathcal{D}$ in a Riemannian manifold $(M,g)$. The Levi-Civita connection on $(M,g)$ together with the orthogonal projection allow to endow the space of sections of $\mathcal{D}$ with a natural covariant derivative, the intrinsic connection. Hence we have two different covariant derivatives for sections of $\mathcal{D}$, one directly with the connection in $(M,g)$ and the other one with this intrinsic connection. Their difference is the second fundamental form of $\mathcal{D}$ and we prove it is a significant tool to characterize the involutive and the totally geodesic distributions and to give a natural formulation of the equation of motion for mechanical systems with constraints. The two connections also give two different notions of curvature, curvature tensors and sectional curvatures, which are compared in this paper with the use of the second fundamental form.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.