Papers
Topics
Authors
Recent
Search
2000 character limit reached

Progressive Operational Perceptron with Memory

Published 20 Aug 2018 in cs.NE | (1808.06377v3)

Abstract: Generalized Operational Perceptron (GOP) was proposed to generalize the linear neuron model in the traditional Multilayer Perceptron (MLP) and this model can mimic the synaptic connections of the biological neurons that have nonlinear neurochemical behaviours. Progressive Operational Perceptron (POP) is a multilayer network composing of GOPs which is formed layer-wise progressively. In this work, we propose major modifications that can accelerate as well as augment the progressive learning procedure of POP by incorporating an information-preserving, linear projection path from the input to the output layer at each progressive step. The proposed extensions can be interpreted as a mechanism that provides direct information extracted from the previously learned layers to the network, hence the term "memory". This allows the network to learn deeper architectures with better data representations. An extensive set of experiments show that the proposed modifications can surpass the learning capability of the original POPs and other related algorithms.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.