Papers
Topics
Authors
Recent
2000 character limit reached

Eliminating the Blind Spot: Adapting 3D Object Detection and Monocular Depth Estimation to 360° Panoramic Imagery

Published 19 Aug 2018 in cs.CV | (1808.06253v1)

Abstract: Recent automotive vision work has focused almost exclusively on processing forward-facing cameras. However, future autonomous vehicles will not be viable without a more comprehensive surround sensing, akin to a human driver, as can be provided by 360{\deg} panoramic cameras. We present an approach to adapt contemporary deep network architectures developed on conventional rectilinear imagery to work on equirectangular 360{\deg} panoramic imagery. To address the lack of annotated panoramic automotive datasets availability, we adapt a contemporary automotive dataset, via style and projection transformations, to facilitate the cross-domain retraining of contemporary algorithms for panoramic imagery. Following this approach we retrain and adapt existing architectures to recover scene depth and 3D pose of vehicles from monocular panoramic imagery without any panoramic training labels or calibration parameters. Our approach is evaluated qualitatively on crowd-sourced panoramic images and quantitatively using an automotive environment simulator to provide the first benchmark for such techniques within panoramic imagery.

Citations (77)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.