Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The empirical likelihood prior applied to bias reduction of general estimating equations (1808.06222v1)

Published 19 Aug 2018 in stat.ME

Abstract: The practice of employing empirical likelihood (EL) components in place of parametric likelihood functions in the construction of Bayesian-type procedures has been well-addressed in the modern statistical literature. We rigorously derive the EL prior, a Jeffreys-type prior, which asymptotically maximizes the Shannon mutual information between data and the parameters of interest. The focus of our approach is on an integrated Kullback-Leibler distance between the EL-based posterior and prior density functions. The EL prior density is the density function for which the corresponding posterior form is asymptotically negligibly different from the EL. We show that the proposed result can be used to develop a methodology for reducing the asymptotic bias of solutions of general estimating equations and M-estimation schemes by removing the first-order term. This technique is developed in a similar manner to methods employed to reduce the asymptotic bias of maximum likelihood estimates via penalizing the underlying parametric likelihoods by their Jeffreys invariant priors. A real data example related to a study of myocardial infarction illustrates the attractiveness of the proposed technique in practical aspects. Keywords: Asymptotic bias, Biased estimating equations, Empirical likelihood, Expected Kullback-Leibler distance, Penalized likelihood, Reference prior.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.