Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble-based Overlapping Community Detection using Disjoint Community Structures (1808.06200v1)

Published 19 Aug 2018 in cs.SI and physics.soc-ph

Abstract: While there has been a plethora of approaches for detecting disjoint communities from real-world complex networks, some methods for detecting overlapping community structures have also been recently proposed. In this work, we argue that, instead of developing separate approaches for detecting overlapping communities, a promising alternative is to infer the overlapping communities from multiple disjoint community structures. We propose an ensemble-based approach, called EnCoD, that leverages the solutions produced by various disjoint community detection algorithms to discover the overlapping community structure. Specifically, EnCoD generates a feature vector for each vertex from the results of the base algorithms and learns which features lead to detect densely connected overlapping regions in an unsupervised way. It keeps on iterating until the likelihood of each vertex belonging to its own community maximizes. Experiments on both synthetic and several real-world networks (with known ground-truth community structures) reveal that EnCoD significantly outperforms nine state-of-the-art overlapping community detection algorithms. Finally, we show that EnCoD is generic enough to be applied to networks where the vertices are associated with explicit semantic features. To the best of our knowledge, EnCoD is the second ensemble-based overlapping community detection approach after MEDOC [1].

Citations (27)

Summary

We haven't generated a summary for this paper yet.