Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble-Based Algorithms to Detect Disjoint and Overlapping Communities in Networks (1609.04903v1)

Published 16 Sep 2016 in cs.SI and physics.soc-ph

Abstract: Given a set ${\cal AL}$ of community detection algorithms and a graph $G$ as inputs, we propose two ensemble methods $\mathtt{EnDisCO}$ and $\mathtt{MeDOC}$ that (respectively) identify disjoint and overlapping communities in $G$. $\mathtt{EnDisCO}$ transforms a graph into a latent feature space by leveraging multiple base solutions and discovers disjoint community structure. $\mathtt{MeDOC}$ groups similar base communities into a meta-community and detects both disjoint and overlapping community structures. Experiments are conducted at different scales on both synthetically generated networks as well as on several real-world networks for which the underlying ground-truth community structure is available. Our extensive experiments show that both algorithms outperform state-of-the-art non-ensemble algorithms by a significant margin. Moreover, we compare $\mathtt{EnDisCO}$ and $\mathtt{MeDOC}$ with a recent ensemble method for disjoint community detection and show that our approaches achieve superior performance. To the best of our knowledge, $\mathtt{MeDOC}$ is the first ensemble approach for overlapping community detection.

Citations (14)

Summary

We haven't generated a summary for this paper yet.