Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Overlapping Community Detection in Dynamic Networks (1605.02288v1)

Published 8 May 2016 in cs.SI and physics.soc-ph

Abstract: Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowledge about the number of communities is still an interesting open research problem. In this paper, we present an overlapping community detection method for dynamic networks called Dynamic Bayesian Overlapping Community Detector (DBOCD). DBOCD assumes that in every snapshot of network, overlapping parts of communities are dense areas and utilizes link communities instead of common node communities. Using Recurrent Chinese Restaurant Process and community structure of the network in the last snapshot, DBOCD simultaneously extracts the number of communities and soft community memberships of nodes while maintaining the consistency of communities over time. We evaluated DBOCD on both synthetic and real dynamic data-sets to assess its ability to find overlapping communities in different types of network evolution. The results show that DBOCD outperforms the recent state of the art dynamic community detection methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.