Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Positive scalar curvature on manifolds with fibered singularities (1808.06007v5)

Published 17 Aug 2018 in math.DG, math.AT, and math.KT

Abstract: A (compact) manifold with fibered $P$-singularities is a (possibly) singular pseudomanifold $M_\Sigma$ with two strata: an open nonsingular stratum $\mathring M$ (a smooth open manifold) and a closed stratum $\beta M$ (a closed manifold of positive codimension), such that a tubular neighborhood of $\beta M$ is a fiber bundle with fibers each looking like the cone on a fixed closed manifold $P$. We discuss what it means for such an $M_{\Sigma}$ with fibered $P$-singularities to admit an appropriate Riemannian metric of positive scalar curvature, and we give necessary and sufficient conditions (the necessary conditions based on suitable versions of index theory, the sufficient conditions based on surgery methods and homotopy theory) for this to happen when the singularity type $P$ is either $\mathbb Z/k$ or $S1$, and $M$ and the boundary of the tubular neighborhood of the singular stratum are simply connected and carry spin structures. Along the way, we prove some results of perhaps independent interest, concerning metrics on spin$c$ manifolds with positive "twisted scalar curvature," where the twisting comes from the curvature of the spin$c$ line bundle.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.