Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attainment Ratings for Graph-Query Recommendation (1808.05988v1)

Published 17 Aug 2018 in cs.IR and cs.DB

Abstract: The video game industry is larger than both the film and music industries combined. Recommender systems for video games have received relatively scant academic attention, despite the uniqueness of the medium and its data. In this paper, we introduce a graph-based recommender system that makes use of interactivity, arguably the most significant feature of video gaming. We show that the use of implicit data that tracks user-game interactions and levels of attainment (e.g. Sony Playstation Trophies, Microsoft Xbox Achievements) has high predictive value when making recommendations. Furthermore, we argue that the characteristics of the video gaming hobby (low cost, high duration, socially relevant) make clear the necessity of personalized, individual recommendations that can incorporate social networking information. We demonstrate the natural suitability of graph-query based recommendation for this purpose.

Summary

We haven't generated a summary for this paper yet.