Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mitigation of Adversarial Attacks through Embedded Feature Selection (1808.05705v1)

Published 16 Aug 2018 in cs.CR and stat.ML

Abstract: Machine learning has become one of the main components for task automation in many application domains. Despite the advancements and impressive achievements of machine learning, it has been shown that learning algorithms can be compromised by attackers both at training and test time. Machine learning systems are especially vulnerable to adversarial examples where small perturbations added to the original data points can produce incorrect or unexpected outputs in the learning algorithms at test time. Mitigation of these attacks is hard as adversarial examples are difficult to detect. Existing related work states that the security of machine learning systems against adversarial examples can be weakened when feature selection is applied to reduce the systems' complexity. In this paper, we empirically disprove this idea, showing that the relative distortion that the attacker has to introduce to succeed in the attack is greater when the target is using a reduced set of features. We also show that the minimal adversarial examples differ statistically more strongly from genuine examples with a lower number of features. However, reducing the feature count can negatively impact the system's performance. We illustrate the trade-off between security and accuracy with specific examples. We propose a design methodology to evaluate the security of machine learning classifiers with embedded feature selection against adversarial examples crafted using different attack strategies.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ziyi Bao (1 paper)
  2. Luis Muñoz-González (24 papers)
  3. Emil C. Lupu (25 papers)
Citations (1)