Papers
Topics
Authors
Recent
2000 character limit reached

On the removal of the trace mode in lattice ${\cal N}=4$ super Yang-Mills theory

Published 14 Aug 2018 in hep-lat | (1808.04735v2)

Abstract: Twisted and orbifold formulations of lattice ${\cal N}=4$ super Yang-Mills theory which possess an exact supersymmetry require a $U(N)=SU(N)\otimes U(1)$ gauge group. In the naive continuum limit, the $U(1)$ modes trivially decouple and play no role in the theory. However, at non-zero lattice spacing they couple to the $SU(N)$ modes and can drive instabilities in the lattice theory. For example, it is well known that the lattice $U(1)$ theory undergoes a phase transition at strong coupling to a chirally broken phase. An improved action that suppresses the fluctuations in the $U(1)$ sector was proposed in arXiv:1505.03135 . Here, we explore a more aggressive approach to the problem by adding a term to the action which can entirely suppress the $U(1)$ mode. The penalty is that the new term breaks the $\mathcal{Q}$-exact lattice supersymmetry. However, we argue that the term is $1/N2$ suppressed and the existence of a supersymmetric fixed point in the planar limit ensures that any SUSY-violating terms induced in the action possess couplings that also vanish in this limit. We present numerical results on supersymmetric Ward identities consistent with this conclusion.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.