Papers
Topics
Authors
Recent
2000 character limit reached

Regime-Switching Temperature Dynamics Model for Weather Derivatives

Published 13 Aug 2018 in q-fin.MF | (1808.04710v1)

Abstract: Weather is a key production factor in agricultural crop production and at the same time the most significant and least controllable source of peril in agriculture. These effects of weather on agricultural crop production have triggered a widespread support for weather derivatives as a means of mitigating the risk associated with climate change on agriculture. However, these products are faced with basis risk as a result of poor design and modelling of the underlying weather variable (temperature). In order to circumvent these problems, a novel time-varying mean-reversion L\'evy regime-switching model is used to model the dynamics of the deseasonalized temperature dynamics. Using plots and test statistics, it is observed that the residuals of the deseasonalized temperature data are not normally distributed. To model the non-normality in the residuals, we propose using the hyperbolic distribution to capture the semi-heavy tails and skewness in the empirical distributions of the residuals for the shifted regime. The proposed regime-switching model has a mean-reverting heteroskedastic process in the base regime and a L\'evy process in the shifted regime. By using the Expectation-Maximization algorithm, the parameters of the proposed model are estimated. The proposed model is flexible as it modelled the deseasonalized temperature data accurately.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.