Papers
Topics
Authors
Recent
2000 character limit reached

Machine Learning for Heterogeneous Ultra-Dense Networks with Graphical Representations

Published 14 Aug 2018 in cs.IT and math.IT | (1808.04547v1)

Abstract: Heterogeneous ultra-dense network (H-UDN) is envisioned as a promising solution to sustain the explosive mobile traffic demand through network densification. By placing access points, processors, and storage units as close as possible to mobile users, H-UDNs bring forth a number of advantages, including high spectral efficiency, high energy efficiency, and low latency. Nonetheless, the high density and diversity of network entities in H-UDNs introduce formidable design challenges in collaborative signal processing and resource management. This article illustrates the great potential of machine learning techniques in solving these challenges. In particular, we show how to utilize graphical representations of H-UDNs to design efficient machine learning algorithms.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.