Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D Geometry-Aware Semantic Labeling of Outdoor Street Scenes (1808.04028v1)

Published 13 Aug 2018 in cs.CV

Abstract: This paper is concerned with the problem of how to better exploit 3D geometric information for dense semantic image labeling. Existing methods often treat the available 3D geometry information (e.g., 3D depth-map) simply as an additional image channel besides the R-G-B color channels, and apply the same technique for RGB image labeling. In this paper, we demonstrate that directly performing 3D convolution in the framework of a residual connected 3D voxel top-down modulation network can lead to superior results. Specifically, we propose a 3D semantic labeling method to label outdoor street scenes whenever a dense depth map is available. Experiments on the "Synthia" and "Cityscape" datasets show our method outperforms the state-of-the-art methods, suggesting such a simple 3D representation is effective in incorporating 3D geometric information.

Citations (12)

Summary

We haven't generated a summary for this paper yet.