Papers
Topics
Authors
Recent
Search
2000 character limit reached

New global optimality conditions for nonsmooth DC optimization problems

Published 10 Aug 2018 in math.OC | (1808.03590v3)

Abstract: In this article we propose a new approach to an analysis of DC optimization problems. This approach was largely inspired by codifferential calculus and the method of codifferential descent and is based on the use of a so-called affine support set of a convex function instead of the Frenchel conjugate function. With the use of affine support sets we define a global codifferential mapping of a DC function and derive new necessary and sufficient global optimality conditions for DC optimization problems. We also provide new simple necessary and sufficient conditions for the global exactness of the $\ell_1$ penalty function for DC optimization problems with equality and inequality constraints and present a series of simple examples demonstrating a constructive nature of the new global optimality conditions. These examples show that when the optimality conditions are not satisfied, they can be easily utilised in order to find "global descent" directions of both constrained and unconstrained problems. As an interesting theoretical example, we apply our approach to the analysis of a nonsmooth problem of Bolza.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.