Locally conformal symplectic structures on Lie algebras of type I and their solvmanifolds (1808.03134v1)
Abstract: We study Lie algebras of type I, that is, a Lie algebra $\mathfrak{g}$ where all the eigenvalues of the operator ad$_X$ are imaginary for all $X\in \mathfrak{g}$. We prove that the Morse-Novikov cohomology of a Lie algebra of type I is trivial for any closed $1$-form. We focus on locally conformal symplectic structures (LCS) on Lie algebras of type I. In particular we show that for a Lie algebra of type I any LCS structure is of the first kind. We also exhibit lattices for some $6$-dimensional Lie groups of type I admitting left invariant LCS structures in order to produce compact solvmanifolds equipped with an invariant LCS structure.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.