Papers
Topics
Authors
Recent
Search
2000 character limit reached

Conjectures on the logarithmic derivatives of Artin L-functions II

Published 9 Aug 2018 in math.AG | (1808.03068v1)

Abstract: We formulate a general conjecture relating Chern classes of subbundles of Gauss-Manin bundles in Arakelov geometry to logarithmic derivatives of Artin L-functions of number fields. This conjecture may be viewed as a far-reaching generalisation of the (Lerch-)Chowla-Selberg formula computing logarithms of periods of elliptic curves in terms of special values of the $\Gamma$-function. We prove several special cases of this conjecture in the situation where the involved Artin characters are Dirichlet characters. This article contains the computations promised in the article {\it Conjectures sur les d\'eriv\'ees logarithmiques des fonctions L d'Artin aux entiers n\'egatifs}, where our conjecture was announced. We also give a quick introduction to the Grothendieck-Riemann-Roch theorem and to the geometric fixed point formula, which form the geometric backbone of our conjecture.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.