Extending some results on the second neighborhood conjecture (1808.02247v3)
Abstract: A vertex in a directed graph is said to have a large second neighborhood if it has at least as many second out-neighbors as out-neighbors. The Second Neighborhood Conjecture, first stated by Seymour, asserts that there is a vertex having a large second neighborhood in every oriented graph (a directed graph without loops or digons). We prove that oriented graphs whose missing edges can be partitioned into a (possibly empty) matching and a (possibly empty) star satisfy this conjecture. This generalizes a result of Fidler and Yuster. An implication of our result is that every oriented graph without a sink and whose missing edges form a (possibly empty) matching has at least two vertices with large second neighborhoods. This is a strengthening of a theorem of Havet and Thomasse, who showed that the same holds for tournaments without a sink. Moreover, we also show that the conjecture is true for oriented graphs whose vertex set can be partitioned into an independent set and a 2-degenerate graph.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.