Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling (1808.01630v4)

Published 5 Aug 2018 in cs.LG and stat.ML

Abstract: This document aims to provide a review on learning with deep generative models (DGMs), which is an highly-active area in machine learning and more generally, artificial intelligence. This review is not meant to be a tutorial, but when necessary, we provide self-contained derivations for completeness. This review has two features. First, though there are different perspectives to classify DGMs, we choose to organize this review from the perspective of graphical modeling, because the learning methods for directed DGMs and undirected DGMs are fundamentally different. Second, we differentiate model definitions from model learning algorithms, since different learning algorithms can be applied to solve the learning problem on the same model, and an algorithm can be applied to learn different models. We thus separate model definition and model learning, with more emphasis on reviewing, differentiating and connecting different learning algorithms. We also discuss promising future research directions.

Citations (16)

Summary

We haven't generated a summary for this paper yet.