On the number of excursion sets of planar Gaussian fields (1807.10209v2)
Abstract: The Nazarov-Sodin constant describes the average number of nodal set components of Gaussian fields on large scales. We generalise this to a functional describing the corresponding number of level set components for arbitrary levels. Using results from Morse theory, we express this functional as an integral over the level densities of different types of critical points, and as a result deduce the absolute continuity of the functional as the level varies. We further give upper and lower bounds showing that the functional is at least bimodal for certain isotropic fields, including the important special case of the random plane wave.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.