Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Betas, Benchmarks and Beating the Market (1807.09919v1)

Published 26 Jul 2018 in q-fin.PM and q-fin.RM

Abstract: We give an explicit formulaic algorithm and source code for building long-only benchmark portfolios and then using these benchmarks in long-only market outperformance strategies. The benchmarks (or the corresponding betas) do not involve any principal components, nor do they require iterations. Instead, we use a multifactor risk model (which utilizes multilevel industry classification or clustering) specifically tailored to long-only benchmark portfolios to compute their weights, which are explicitly positive in our construction.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.