Papers
Topics
Authors
Recent
2000 character limit reached

Total variation estimates in the Breuer-Major theorem

Published 25 Jul 2018 in math.PR | (1807.09707v1)

Abstract: This paper provides estimates for the convergence rate of the total variation distance in the framework of the Breuer-Major theorem, assuming some smoothness properties of the underlying function. The results are proved by applying new bounds for the total variation distance between a random variable expressed as a divergence and a standard Gaussian random variable, which are derived by a combination of techniques of Malliavin calculus and Stein's method. The representation of a functional of a Gaussian sequence as a divergence is established by introducing a shift operator on the expansion in Hermite polynomials. Some applications to the asymptotic behavior of power variations of the fractional Brownian motions and to the estimation of the Hurst parameter using power variations are presented.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.