Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional Neural Networks In Classifying Cancer Through DNA Methylation (1807.09617v1)

Published 24 Jul 2018 in q-bio.GN, cs.LG, and stat.ML

Abstract: DNA Methylation has been the most extensively studied epigenetic mark. Usually a change in the genotype, DNA sequence, leads to a change in the phenotype, observable characteristics of the individual. But DNA methylation, which happens in the context of CpG (cytosine and guanine bases linked by phosphate backbone) dinucleotides, does not lead to a change in the original DNA sequence but has the potential to change the phenotype. DNA methylation is implicated in various biological processes and diseases including cancer. Hence there is a strong interest in understanding the DNA methylation patterns across various epigenetic related ailments in order to distinguish and diagnose the type of disease in its early stages. In this work, the relationship between methylated versus unmethylated CpG regions and cancer types is explored using Convolutional Neural Networks (CNNs). A CNN based Deep Learning model that can classify the cancer of a new DNA methylation profile based on the learning from publicly available DNA methylation datasets is then proposed.

Citations (9)

Summary

We haven't generated a summary for this paper yet.