Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Class Lesion Diagnosis with Pixel-wise Classification Network (1807.09227v1)

Published 24 Jul 2018 in cs.CV

Abstract: Lesion diagnosis of skin lesions is a very challenging task due to high inter-class similarities and intra-class variations in terms of color, size, site and appearance among different skin lesions. With the emergence of computer vision especially deep learning algorithms, lesion diagnosis is made possible using these algorithms trained on dermoscopic images. Usually, deep classification networks are used for the lesion diagnosis to determine different types of skin lesions. In this work, we used pixel-wise classification network to provide lesion diagnosis rather than classification network. We propose to use DeeplabV3+ for multi-class lesion diagnosis in dermoscopic images of Task 3 of ISIC Challenge 2018. We used various post-processing methods with DeeplabV3+ to determine the lesion diagnosis in this challenge and submitted the test results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Manu Goyal (18 papers)
  2. Jiahua Ng (1 paper)
  3. Moi Hoon Yap (41 papers)
Citations (6)