Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization (1807.09146v3)

Published 24 Jul 2018 in math.OC

Abstract: Block-coordinate descent (BCD) is a popular framework for large-scale regularized optimization problems with block-separable structure. Existing methods have several limitations. They often assume that subproblems can be solved exactly at each iteration, which in practical terms usually restricts the quadratic term in the subproblem to be diagonal, thus losing most of the benefits of higher-order derivative information. Moreover, in contrast to the smooth case, non-uniform sampling of the blocks has not yet been shown to improve the convergence rate bounds for regularized problems. This work proposes an inexact randomized BCD method based on a regularized quadratic subproblem, in which the quadratic term can vary from iteration to iteration: a "variable metric". We provide a detailed convergence analysis for both convex and nonconvex problems. Our analysis generalizes to the regularized case Nesterov's proposal to improve convergence of BCD by sampling proportional to the blockwise Lipschitz constants. We improve the convergence rate in the convex case by weakening the dependency on the initial objective value. Empirical results also show that significant benefits accrue from the use of a variable metric.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.