Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Automatic Skin Lesion Segmentation using Adversarial Learning based Data Augmentation (1807.08392v2)

Published 23 Jul 2018 in cs.CV

Abstract: Segmentation of skin lesions is considered as an important step in computer aided diagnosis (CAD) for automated melanoma diagnosis. In recent years, segmentation methods based on fully convolutional networks (FCN) have achieved great success in general images. This success is primarily due to the leveraging of large labelled datasets to learn features that correspond to the shallow appearance as well as the deep semantics of the images. However, the dependence on large dataset does not translate well into medical images. To improve the FCN performance for skin lesion segmentations, researchers attempted to use specific cost functions or add post-processing algorithms to refine the coarse boundaries of the FCN results. However, the performance of these methods is heavily reliant on the tuning of many parameters and post-processing techniques. In this paper, we leverage the state-of-the-art image feature learning method of generative adversarial network (GAN) for its inherent ability to produce consistent and realistic image features by using deep neural networks and adversarial learning concept. We improve upon GAN such that skin lesion features can be learned at different level of complexities, in a controlled manner. The outputs from our method is then augmented to the existing FCN training data, thus increasing the overall feature diversity. We evaluated our method on the ISIC 2018 skin lesion segmentation challenge dataset and showed that it was more accurate and robust when compared to the existing skin lesion segmentation methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lei Bi (62 papers)
  2. Dagan Feng (37 papers)
  3. Jinman Kim (72 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.