Papers
Topics
Authors
Recent
2000 character limit reached

Knowledge-based Transfer Learning Explanation

Published 22 Jul 2018 in cs.AI and cs.LG | (1807.08372v1)

Abstract: Machine learning explanation can significantly boost machine learning's application in decision making, but the usability of current methods is limited in human-centric explanation, especially for transfer learning, an important machine learning branch that aims at utilizing knowledge from one learning domain (i.e., a pair of dataset and prediction task) to enhance prediction model training in another learning domain. In this paper, we propose an ontology-based approach for human-centric explanation of transfer learning. Three kinds of knowledge-based explanatory evidence, with different granularities, including general factors, particular narrators and core contexts are first proposed and then inferred with both local ontologies and external knowledge bases. The evaluation with US flight data and DBpedia has presented their confidence and availability in explaining the transferability of feature representation in flight departure delay forecasting.

Citations (42)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.