Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On type-preserving representations of the thrice punctured projective plane group (1807.08298v1)

Published 22 Jul 2018 in math.GT and math.DS

Abstract: In this paper we consider type-preserving representations of the fundamental group of the three--holed projective plane into $\mathrm{PGL}(2, \R) =\mathrm{Isom}(\HH2)$ and study the connected components with non-maximal euler class. We show that in euler class zero for all such representations there is a one simple closed curve which is non-hyperbolic, while in euler class $\pm 1$ we show that there are $6$ components where all the simple closed curves are sent to hyperbolic elements and $2$ components where there are simple closed curves sent to non-hyperbolic elements. This answer a question asked by Brian Bowditch. In addition, we show also that in most of these components the action of the mapping class group on these non-maximal component is ergodic. In this work, we use an extension of Kashaev's theory of decorated character varieties to the context of non-orientable surfaces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.